Correction: Enhanced Photoluminescence and Raman Properties of Al-Doped ZnO Nanostructures Prepared Using Thermal Chemical Vapor Deposition of Methanol Assisted with Heated Brass
نویسندگان
چکیده
Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.
منابع مشابه
The Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods
In this study un-doped and Eu-doped ZnO nanorods and microrads were fabricated by Chemical Vapor Deposition (CVD) method. The effects of annealing, synthesis temperature and structure on structural and photoluminescence properties of Eu-doped ZnO samples were studied in detail. Prepared samples were characterized using X-Ray diffraction (XRD), scanning electron microscopy (SEM), particle size a...
متن کاملGrowth of carbon nanostructures upon stainless steel and brass by thermal chemical vapor deposition method
The lack of complete understanding of the substrate effects on carbon nanotubes (CNTs) growth poses a lot oftechnical challenges. Here, we report the direct growth of nanostructures such as the CNTs on stainless steel 304and brass substrates using thermal chemical vapor deposition (TCVD) process with C2H2 gas as carbon sourceand hydrogen as supporting gas mixed in Ar gas flow. We used an especi...
متن کاملGrowth of Single Crystalline ZnO Nanotubes and Nanosquids
The growth of ZnO nanotubes and nanosquids is obtained by conventional thermal chemical vapor deposition (CVD) without the use of catalysts or templates. Characterization of these ZnO nanostructures was conducted by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), Raman spectroscopy, and photoluminescence (PL). Results indicate that these ZnO nanostructures m...
متن کاملGreen Method for Synthesizing Gallium Nitride Nanostructures at Low Temperature
Gallium nitride (GaN) nanostructures (NS) were synthesized using pulseddirect current plasma enhanced chemical vapor deposition (PDC-PECVD) on quartzsubstrate at low temperature (600°C). Gallium metal (Ga) and nitrogen (N) plasma wereused as precursors. The morphology and structure of the grown GaN NS werecharacterized by field emission scanning electron microscope (FE-SEM), transmissionelectro...
متن کاملMetal organic chemical vapor deposition and investigation of ZnO thin films grown on sapphire
A new type of large area metal organic chemical vapor deposition (MOCVD) system for the growth of high quality and large size ZnO materials is introduced. Materials properties of the un-doped, nand p-doped ZnO epi-films grown on sapphire substrates by this MOCVD system are studied by various techniques, including high resolution X-ray diffraction (XRD), UV–Visible optical transmission (OT), pho...
متن کامل